
UNIT-4 E-Content Prepared by Dr. K Rajendra Prasad

Algorithm of Liang-Barsky Line Clipping:
Step 1: Set the endpoints of the line (x1, y1) and (x2, y2).

Step 2: Calculate the value of p1, p2,p3, p4 and q1, q2, q3,q4.

Step 3: Now we calculate the value of t

 t1 = 0 (For initial point)

 t2 = 1 (For final point)

Step 4: Now, we have to calculate the value of pk and qk

 If

 pk = 0

 then

 {The line is parallel to the window}

 If

 qk < 0

 then

 {The line is completely outside the window}

Step 5: If we have non zero value of pk –

 If

 pk < 0

 then

 t1 = max (0, qk / pk)

 If

 pk > 0

 then

 t2 = min (1, qk / pk)

Now, if t1 < t2 {If t1 value is changed

 Then the first point is outside the window.

 If t2 value is changed

 Then the second point is outside the window}

 else

 t1 > t2

 then

 {Line is completely outside the window}

Step 6: Stop.

Example:

Let a rectangular window size with (5, 9). The points of the line are (4, 12) and (8, 8). Use the

Liang- Barsky algorithm to clip the line and find the intersection point.

Solution:

We have,

The initial point of the line (p1) = (4, 12)

The ending point of the line (p2) = (8, 8)

 x1 = 4, x2 = 8

 y1 = 12, y2 = 8

xwmin = 5, xwmax = 9

ywmin = 5, ywmax = 9

Step 1: We have to calculate the value of ?x and?y-

 ?x = x2– x1= 8-4 = 4

 ?y = y2– y1= 8-12 = -4

Step 2: Now, we will calculate-

UNIT-4 E-Content Prepared by Dr. K Rajendra Prasad

 p1 = -4 q1 = 4-5 = -1

 p2 = 4 q2 = 9-4 = 5

 p3 = 4 q3 = 12-5 = 7

 p4 = -4 q4 = 9-12 = -3

Step 3: Now we will calculate t1 value–

 If p1, p4 < 0

 Then t1 =max (0, qk /pk)

 =max (0, q1 /p1, q4 /p4)

 =max (0, 1/4, 3/4)

 t1 = 3/4

If p2, p3 > 0

Then t2 = min (1, qk /pk)

 = min (1, q2 /p2, q3 /p3)

 = min (1, 5/4, 7/4)

 t2 = 1

Step 4: Now, we have to calculate the intersection point.

 x = x1 + t1. ?x= 4+ 3/4 * 4 = 7

 y = y1 + t1. ?y= 12+ 3/4 *(-4) = 9

The coordinates intersection point = (7, 9)

UNIT-4 E-Content Prepared by Dr. K Rajendra Prasad

POLYGON CLIPPING
A polygon boundary processed with a line clipper may be displayed as a series of unconnected

line segments (Fig. 6-17), depending on the orientation of the polygon to the clipping window.

For polygon clipping, we require an algorithm that will generate one or more closed areas that

are then scan converted for the appropriate area fill. The output of a polygon clipper should be

a sequence of vertices that defines the clipped polygon boundaries.

Sutherland-Hodgeman Polygon Clipping

We can correctly clip a polygon by processing the polygon boundary as a whole against each

window edge.

Beginning with the initial set of polygon vertices, we could first clip the polygon against the

left rectangle boundary to produce a new sequence of vertices. The new set of vertices could

then successively passed to a right boundary clipper, a bottom boundary clipper, and a top

boundary clipper, as in Fig. 6-19. At each step, a new sequence of output vertices is generated

and passed to the next window boundary clipper.

There are four possible cases when processing vertices in sequence around the perimeter of a

polygon. As each pair of adjacent polygon vertices is passed to a window boundary clipper, we

make the following tests:

UNIT-4 E-Content Prepared by Dr. K Rajendra Prasad

(1) If the first vertex is outside the window boundary and the second vertex is inside, both the

intersection point of the polygon edge with the window boundary and the second vertex are

added to the output vertex list.

(2) If both input vertices are inside the window boundary, only the second vertex is added to

the output vertex list.

(3) li the first vertex is inside the window boundary and the second vertex is outside, only the

edge intersection with the window boundary is added to the output vertex list.

(4) If both input vertices are outside the window boundary, nothing is added to the output list.

These four cases are illustrated in Fig. 6-20 for successive pairs of polygon vertices. Once all

vertices have been processed for one clip window boundary, the output 11st of vertices is

clipped against the next window boundary.

Convex polygons are correctly clipped by the Sutherland-Hodgeman algorithm, but concave

polygons may be displayed with extraneous lines, as demonstrated in Fig. 6-24. This occurs

when the clipped polygon should have two or more separate sections. But since there is only

one output vertex list, the last vertex in the list is always joined to the first vertex. There are

several things we could do to correctly display concave polygons. For one, we could split the

concave polygon into two or more convex polygons and process each convex polygon

UNIT-4 E-Content Prepared by Dr. K Rajendra Prasad

separately. Another possibility is to modify the Sutherland-Hodgeman approach to check the

final vertex list for multiple vertex points along any clip window boundary and correctly join

pairs of vertices.

